KATHMANDU UNIVERSITY SCHOOL OF
MANAGEMENT

BBIS
COM 102 : 3 Credit Hours

9. Pointers

27/02/2022

Outlines

9. Pointers (6 hrs)
9.1 Pointer Declaration
9.2 Pointer Arithmetic
9.3 Operation on Pointers
9.4 Pointer and Array (Pointer and one dimension Array)
9.5 Multidimensional
9.5 Dynamic Memory Allocation

* Address in C

* Suppose, we have a variable named “var”, then
Its address can be accessed with a “&” by
“&var”.

* Also, we have used this concept several times
In scanf() function.

* As, scanf(*%d”, &var);

Example

#include <stdio.h>

Int main()
Output

{ var: 5
Address of var: Address may varies depending on your RAM.

int var = 5;
printf("var: %d\n", var);

// Notice the use of & before var
printf("address of var: %p", &var);
return O;

}

C Pointers

Pointers (pointer variables) are special variables that are used to store addresses
rather than values.

Indirect way of accessing and manipulating a variable content.

This variable can be of type int, char, array, function, or any other pointer.

The size of the pointer depends on the architecture.

However, in 32-bit architecture the size of a pointer is 2 byte.

Pointer Syntax

* Here is how we can declare pointers.
int *p;
Here, a pointer “p” of int type is declared.

Example

Address feed — fff4 —— 000A

Values

*p *p var

Here, pointer variable stores the address of number variable, i.e., 000A.
The value of number variable is 10. But the address of pointer variable p is fff4.

* Advantage of pointer

1) Pointer reduces the code and improves the performance, it is
used to retrieving strings, trees, etc. and used with arrays,
structures, and functions.

2) We can return multiple values from a function using the pointer.

3) It makes you able to access any memory location in the
computer's memaory.

Usage of pointer

1) Dynamic memory allocation

1)- dynamically allocate memory using malloc() and
calloc() functions where the pointer Is used.

2) Arrays, Functions, and Structures

1)- used in arrays, functions, and structures. It reduces
the code and improves the performance.

Contd...

* You can also declare pointers in these ways.
Int *p1;
Int * p2;

* Let's take another example of declaring pointers.
Int* pl, p2;

* Here, we have declared a pointer pl and a normal variable
p2.

Operator

Source: https://www.guru99.com/c-pointers.html

Contd...

Meaning

Serves 2 purpose

1. Declaration of a pointer
2. Returns the value of the referenced variable

Serves only 1 purpose

e Returns the address of a variable

Contd...

* Assigning addresses to Pointers
* Let's take an example.

Int* pc, c;
C =5;
pc = &cC;

* Here, 5 Is assigned to the c variable. And, the address of c
IS assigned to the pc pointer.

How pointer works in C

int var = 10;

Int *ptr = ↕

*ptr:lO; var
*ptr = 20;

var

Int **ptr = &ptr;

#include<stdio.h>
main()

{

Int u=5;
Int *pu;
printf("

\n u=%d &u=%x pu=%x

*pu=%d",u,&u,pu,*pu);
}

*pu and pu give garbage value

Get Value of Thing Pointed by Pointers

we use the * operator to get the value of the thing pointed by the
pointers.
For example:

Int* pc, C;

C = 95;

pC = &C;

printf("%d", *pc); // Output: 5

In the above example, pc is a pointer, not *pc. You cannot and should not
do something like *pc = &c;

*Is called the dereference operator (when working with pointers). It
operates on a pointer and gives the value stored in that pointer.

Changing Value Pointed by Pointers

Int* pc, C;

C=09;

pC = &C;

c =1,

printf("%d", c); // Output: 1
printf("%d", *pc); // Ouptut: 1

Example

Int* pc, c, d;

C = J;

d =-15;

0C = &C;

orintf("%d", *pc); // Output: 5
0C = &d;

orintf("%d", *pc); // Ouptut: -15

Pointer Program to swap two numbers without using the 3rd
variable.

iInt a=10,b=20,;

printf("Before swap: *p1=%d *p2=%d",*p1,*p2);
a=a+Db;

b=a-b;

a=a-b;

printf("\nAfter swap: *p1=%d *p2=%d",*p1,*p2);

Pointer Arithmetic

Increment (++)
Decrement (--)
an integer may be added to a pointer (+ or +=)

an integer may be subtracted from a pointer (—
or -=)

Note: Pointer arithmetic is meaningless unless
performed on an array.

Contd...

* Pointers contain addresses.
* Adding two addresses makes no sense,
* As, there Is no idea what it would point to.

* Subtracting two addresses lets you compute
the offset between these two addresses.

C++ program to illustrate Pointer Arithmetic
/| Declare an array
int v[3] = {10, 100, 200},
/[Declare pointer variable

Int *ptr;

// Assign the address of v[0] to ptr
ptr = v;

for (int1=0; 1< 3; i++)

{

printf("Value of *ptr = %d\n", *ptr);
printf("Value of ptr = %p\n\n", ptr);
// Increment pointer ptr by 1
ptr++;

}

Operation

Assignment

Incrementation and decrementation

Adding an offset (Constant)

Explanation

int *P1P2

P1=P2,

P1 and P2 point to the same integer
variable

Int *P1;
P1++;P1-;

This allows the pointer to move N
elements in a table.

The pointer will be increased or
decreased by N times the number of byte
(s) of the type of the variable.

P1+5;

Pointers & Arrays

* An array name acts like a pointer constant. The

value of this pointer constant is the address of
the first element.

* For example, iIf we have an array named val
then val and &val[O] can be used
iInterchangeably.

Example

#include <stdio.h>

int main() {
int x[4]; There is a difference of 4 bytes between two consecutive
int i elements of array x.
because the size of int is 4 bytes (on our compiler).
AL o Notice that, the address of &x[0] and x is the same. It's
for(l.— O,’, <45 ++4) { Lo because the variable name x points to the first element of the
printf("&x[%d] = %p\n", i, arra
: y.
&xi]);
}
printf("Address of array x: %p",
X);
return O;

}

#include <stdio.h>
iInt main()

{
int a[5]={1,2,3,4,5}; //array initialization

Int *ptr; //pointer declaration
[*the ptr points to the first element of the array?*/

ptr=a; /*We can also type simply ptr=&a[0] */

printf("Printing the array elements using pointer\n");
for(int i=0;i<5;i++) //loop for traversing array elements

{

printf("\n%x",*ptr); //printing array elements

ptr++; //incrementing to the next element, you can also write ptr=ptr+1
}
return O;

Contd...

a[0] a[1] a[2] a[3] a[4]
ptr{O] ptr[1] ptr{2] ptr[3] ptr{4]
- Ptr++

Now if this ptr is sent to a function as an argument, then the array
val can be accessed in a similar fashion.

void arr() {
/[Declare an array
int val[3] = {5, 10, 15},
/[Declare pointer variable
Int *ptr,;
// Assign address of val[O] to ptr.
/[We can use ptr=&val[0];(both are same)
ptr = val ;
cout << "Elements of the array are: ";
cout << ptr[0] << " " << ptr[l] << " " << ptr[2];
return O;
}
iInt main() {
arr();
return O;

}

Example

Here, If ptr points to the first element in the above example
then ptr + 3 will point to the fourth element.

For example,

Int *ptr;

Int arr[5];

ptr = arr;

otr + 1 1S equivalent to &arr|
otr + 2 1S equivalent to &arr|
otr + 3 IS equivalent to &arr
otr + 4 1S equivalent to &arr|

B wN R

POINTERS AND
MULTIDIMENSIONAL ARRAYS

* multidimensional array can also be represented with an pointer
notation

* two-dimensional array, for example, is actually a collection of one
-dimensional arrays

e we can define a two-dimensional array as a pointer to a group of
contiguous one- dimensional arrays

Contd...

A two-dimensional array declaration can be written
as:

data- type (*ptvar) [expression 2] ;
rather than

data- type array[expression 1] [expression 2];

Contd...

“X” Is a two-dimensional integer array having 10 rows and 20 columns

Int (*x)[20];
rather than
Int x[10][20];

“X” Is defined to be a pointer to a group of contiguous,
one-dimensional, 20-element integer arrays

Contd...

* The item In row 3, column 6 can be accessed by
writing either

a[2][5]
* or
(" (x+2)+5)

matrix addition using pointers

((ctrow)+col)= *(*(a+row)+col)+*(*(b+row)+col)

Contd...

#include<stdio.h>
#define MAXROWS 20

void readinput(int *alMAXROWS], int nrows, int ncols);

void computesums(int *a|[MAXROWS],int *o[MAXROWS],int
*c[MAXROWS],int nrows,int ncols);

void writeoutput(int *c[MAXROWS],int nrows,int ncols);

main()

{

int row,nrows,ncols;

int *a[MAXROWS],*b[MAXROWS],*c[MAXROWS];
printf("How many rows?");
scanf("%d",&nrows);

printf("\n How many columns");
scanf("%d",&ncols);
for(row=0;row<nrows;++row){
a[row]=(int *)malloc(ncols*sizeof(int));
b[row]=(int *)malloc(ncols*sizeof(int));
c[row]=(int *)malloc(ncols*sizeof(int));
}

printf("\n\nFirst table:\n");
readinput(a,nrows,ncols);
printf("\n\nSecond table:\n");
readinput(b,nrows,ncols);
computesums(a,b,c,nrows,ncols);
printf("\n\nSums of the elements:\n\n");
writeoutput(c,nrows,ncols);

}

Contd...

void readinput(int *a[MAXROWS],int m,int n) {
int row, col,

for(row=0;row<m;++row) {
for(col=0;col<n;++col) {
scanf("%d",(*(a+row)+col));

Contd...

void computesums(int *a[MAXROWS],int *o[MAXROWS],int *c[MAXROWS],int m,int n)
{

int row, col;

for(row=0;row<m;++row){

for(col=0;col<n;++col){

((c+row)+col) = *(*(a+row)+col)+*(*(b+row)+col);
}

}

}

Contd...

void writeoutput(int *a]MAXROWS],int m,int n)
{
int row, col;
for(row=0;row<m;++row) {
for(col=0;col<n;++col) {
printf("%d \t",*(*(a+row)+col));

}
printf("\n");

Static memory allocation and

Dynamic memory allocation

static memory allocation dynamic memory allocation
memory is allocated at compile time, memory is allocated at run time,
memory can't be increased while executing program. memory can be increased while executing program,

used in array. used in linked list.

Dynamic memory allocation

* As we know, an array is a collection of a fixed number of values.
* Once the size of an array Is declared, you cannot change lIt.

* Sometimes the size of the array you declared may be insufficient.
* To solve this issue, you can allocate memory manually during run-time.
This i1s known as dynamic memory allocation in C programming.

* To allocate memory dynamically, library functions are malloc(), calloc(),
realloc() and free() are used.

* These functions are defined in the <stdlib.h> header file.

Malloc()

* The name "malloc" stands for memory allocation.

* The malloc() function reserves a block of
memory of the specified number of bytes.

* It returns a pointer of void which can be casted
Into pointers of any form.

Syntax for malloc()

ptr = (castType*) malloc(size);

Example:
ptr = (float*) malloc(100 * sizeof(float));

The above statement allocates 400 bytes of memory. It's because the size
of float is 4 bytes. And, the pointer ptr holds the address of the first byte in
the allocated memory.

The expression results in a NULL pointer if the memory cannot be allocated.

Malloc()

, [
int* ptr = (int*) malloc (5* sizeof (int));

L J

2 I

+— 20 bytes of memory —»

Calloc()

The name "calloc" stands for contiguous allocation.

The malloc() function allocates memory and leaves the memory uninitialized,
whereas the calloc() function allocates memory and initializes all bits to zero.
Syntax of calloc()

ptr = (castType*)calloc(n, size);

Example:
ptr = (float*) calloc(25, sizeof(float));

The above statement allocates contiguous space in memory for 25 elements of type
float.

Contd...

Calloc()

int* ptr = (int*) calloc (5, sizeof (int));
I

otr=(T [1 []

~4b—

free()

* Dynamically allocated memory created with either calloc() or
malloc() doesn't get freed on their own.

* You must explicitly use free() to release the space.
e Syntax of free()
free(ptr);

* This statement frees the space allocated in the memory pointed by
ptr.

Contd...

Free()

int* ptr = (int*) calloc (5, sizeof (iﬂt-]},‘

¥

e g
20 Byttt o FreErmcay

operation on ptr
freel pir)

Example malloc() and free()

// Program to calculate the sum of n numbers entered by the user
#include <stdio.h>
#include <stdlib.h>
int main() {
int n, i, *ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &n);
ptr = (int*) malloc(n * sizeof(int));

// if memory cannot be allocated
if(ptr == NULL) {
printf("Error! memory not allocated.");
exit(0);
}
printf("Enter elements: ");
for(i=0; i <n; ++i) {
scanf("%d", ptr + i);
sum += *(ptr + i);
}

printf("Sum = %d", sum);

// deallocating the memory
free(ptr);
return O;

Example calloc() and free()

// Program to calculate the sum of n numbers entered by the user
#include <stdio.h>
#include <stdlib.h>

int main() {
int n, i, *ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &n);

ptr = (int*) calloc(n, sizeof(int));

if(ptr == NULL) {
printf("Error! memory not allocated.");
exit(0);

}

printf("Enter elements: ");

for(i=0; i <n; ++i) {
scanf("%d", ptr + i);
sum += *(ptr + i);

}

printf("Sum = %d", sum);
free(ptr);
return O;

realloc()

If the dynamically allocated memory is insufficient or more
than required, you can change the size of previously
allocated memory using the realloc() function.

Syntax of realloc()
ptr = realloc(ptr, x);

Here, ptr is reallocated with a new size x.

Contd...

Realloc()

int* ptr = (int*) malloc (5* sizeof (int ;

ptr = |] =05

20 bytes of memory

ptr = realloc (ptr, 10* sizeof(int));

ptr= [

Example realloc() and free()

#include <stdlib.h>

int *ptr, i, n1, n2;
printf("Enter size: ");
scanf("%d", &n1);

ptr = (int*) malloc(n1 * sizeof(int));

printf("Addresses of previously allocated memory:\n");
for(i = 0; i <nl; ++i)
printf("%pc\n",ptr + i);

printf("\nEnter the new size: ");
scanf("%d", &n2);

// rellocating the memory
ptr = realloc(ptr, n2 * sizeof(int));

printf(" Addresses of newly allocated memory:\n");
for(i = 0; i <n2; ++i)
printf("%pc\n", ptr + i);

free(ptr);

More Example

#include <stdio.h>
#include <stdlib.h>
int main()
{
intindex=0,i=0,n,
*marks; // this marks pointer hold the base address
/Il of the block created
int ans;
marks = (int*)malloc(sizeof(int)); // dynamically allocate memory using malloc
/I check if the memory is successfully allocated by
/[malloc or not?
if (marks == NULL) {
printf("memory cannot be allocated");
}
else {
/I memory has successfully allocated
printf("Memory has been successfully allocated by " "using malloc\n");
printf("\n marks = %p\n", marks); // print the base or beginning
// address of allocated memory

do{
printf("\n Enter Marks\n");
scanf("%d", &marks[index]); // Get the marks
printf("would you like to add more(1/0): ");
scanf("%d", &ans);

if (ans == 1) {
index++;
marks = (int*)realloc(marks, (index + 1) * sizeof(int)); // Dynamically reallocate
/l memory by using realloc
/I check if the memory is successfully
/I allocated by realloc or not?
if (marks == NULL) {
printf("memory cannot be allocated");

}
else {
printf("Memory has been successfully " "reallocated using realloc:\n");
printf("\n base address of marks are:%p", marks); ////print the base or
/l/lbeginning address of
/llallocated memory
}

} while (ans == 1);
/I print the marks of the students
for (i = 0; i <= index; i++) {
printf("marks of students %d are: %d\n ", i,
marksii]);

free(marks);

}

return O;

}

Any queries???

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

